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Abstract

As is well known, the elastic stability of shell structures under certain loading conditions is characterised by a se-

verely unstable postbuckling behaviour. The presence of simultaneous buckling modes (�competing� modes corre-

sponding to the same critical buckling load) is deemed to be largely responsible for such a behaviour. In the present

paper, within the framework of the so-called classical theory (linear bifurcation eigenvalue analysis), the buckling

behaviour of axially compressed cylindrical shells is firstly reviewed. Accordingly, doubly periodic eigenvectors

(buckling modes) corresponding to the same eigenvalue (critical buckling load) can be determined, and their locus in a

dimensionless meridional and circumferential buckling wavenumber space is described by a circle (known as the Koiter

circle). In the case of axially compressed conical shells, no clear evidence of the existence of simultaneous buckling

modes can be found in the literature. Then, such a problem is studied here via linear eigenvalue finite element analyses,

showing that simultaneous doubly periodic modes do also occur for cones, and that their locus in a specifically defined

dimensionless wavenumber space can be described by an ellipse (hereafter termed as the Koiter ellipse) whose aspect

ratio is dependent on the tapering angle of the cone.
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1. Introduction

Buckling is often the main cause of collapse in thin-walled shell structures submitted to compressive

stresses. As is well known, even in the case of fully elastic behaviour of the material the actual collapse load

might be dramatically lower than the critical buckling (bifurcation) load obtained from linear eigenvalue
analysis, due to the presence of unintentional imperfections (geometrical, of loading, etc.). Hence, the

evaluation of the actual collapse load is a difficult task involving non-linear analysis. Among the shell

stability problems, that of cylinders has thoroughly been studied, because of their simple geometry. In

particular, the loading condition of axial compression has largely been investigated due to the related high
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Nomenclature

C extensional stiffness parameter: C ¼ Et=b12ð1� m2Þc
D bending stiffness parameter: D ¼ Et3=b12ð1� m2Þc
E Young�s modulus

F ðbm; bcÞ locus of simultaneous buckling modes in the dimensionless wavenumber space

l0 meridional half wavelength for axisymmetric buckling of axially compressed cylinders

(see Eq. (8))

lm meridional buckling half wavelength for cylinders (see Eq. (10a))
�llm meridional buckling half wavelength for cones (see Eq. (25a))

lc circumferential buckling half wavelength for cylinders (see Eq. (10b))
�llc average circumferential buckling half wavelength for cones (see Eq. (25b))

L slant length of cone

m number of meridional buckling half waves

n number of circumferential buckling full waves

P applied load or buckling load (linear eigenvalue analysis)

P 0 dimensionless load parameter (see Eq. (21))

Pcone Seide�s buckling load for axially compressed cones (see Eq. (2))

Pcyl classical buckling load for axially compressed cylinders (see Eq. (1))
R radius of cylinder

RðxÞ radius of cone at any point

R average radius of cone, R ¼ ðR1 þ R2Þ=2
s meridional coordinate measured from the cone apex (see Fig. 1)

s0 dimensionless meridional coordinate, s0 ¼ s=s2
t shell thickness

u displacement in meridional direction, positive towards the large radius (see Fig. 1)

v displacement in circumferential direction (see Fig. 1)
w out-of-plane displacement, positive inwards (see Fig. 1)

w0 dimensionless out-of-plane displacement, w0 ¼ w=t
x meridional coordinate measured from the small radius, 06 x6L (see Fig. 1)

y circumferential curvilinear coordinate, 06 y6 2pR1 (see Fig. 1)

Z Batdorf parameter

a tapering angle of cone

bm dimensionless meridional buckling wavenumber for cylinders (see Eq. (11a))
�bbm dimensionless meridional buckling wavenumber for cones (see Eq. (24a))
bc dimensionless circumferential buckling wavenumber for cylinders (see Eq. (11b))
�bbc dimensionless circumferential buckling wavenumber for cones (see Eq. (24b))

c dimensionless geometric parameter of cone (see Eq. (21))

# circumferential coordinate, 06#6 2p (see Fig. 1)

#0 modified circumferential coordinate, #0 ¼ # sin a
#0 angular width of the finite element panel model (see Fig. 3)

k linear meridional bending half wavelength for cylinders (see Eq. (7))
�kk average linear meridional bending half wavelength for cones (see Eq. (26))
m Poisson�s ratio
qðxÞ radius of curvature of cone at any point, qðxÞ ¼ RðxÞ= cos a (see Fig. 1)
�qq average radius of curvature of cone, �qq ¼ ðq1 þ q2Þ=2
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u stress function

u0 dimensionless stress function (see Eq. (21))

r4 fourth-order partial differential operator (see Eq. (4))
r2

second-order partial differential operator (see Eq. (22))

Subscripts

1 referring to small-radius end

2 referring to large-radius end
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imperfection sensitivity. Together with cylinders, cones or truncated cones (frusta) are the other single-
curvature shells of revolution. Nevertheless, the buckling of axially compressed conical shells has attracted

much more limited attention in comparison to their cylindrical counterparts.

Classical buckling analysis of cylinders under axial compression is based on the hypotheses of membrane

prebuckling state, i.e. prebuckling rotations due to Poisson�s effect along the curved edges are neglected

(hence, such an analysis is referred to as for infinite shell length), and of shallow shell theory of Donnell

(1934), Mushtari (1938) and Vlasov (1949), (see also the kinetic relationships of Sanders (1963) and Koiter

(1966)). Based on the above hypotheses the critical buckling load, obtained for an axisymmetric mode by

Lorenz (1908), Timoshenko (1910) and Southwell (1914), is
Pcyl ¼
2pEt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p ð1Þ
The axisymmetric buckling mode is described by a sine function with a constant amplitude. Donnell (1934)

obtained the same critical load for asymmetric buckling modes, which are characterised by sine functions

with different combinations of meridional and circumferential numbers of waves. As has been shown by

Koiter (1945), the pairs of the meridional and circumferential buckling waves are distributed along a circle

in a dimensionless wavenumber space. Such a locus is commonly known as the Koiter circle (see Calladine,

1983, Section 14.3, for a modern account).

As is mentioned above, the critical buckling load obtained from linear eigenvalue analysis might not give
us exhaustive information regarding the actual collapse load of shells. For this purpose, the so-called

postbuckling behaviour has to be analysed without limitations on the entity of displacements (large dis-

placement non-linear analysis). Non-linear analyses were carried out for axially compressed cylinders by

von Karman and coworkers (von Karman et al., 1940; von Karman and Tsien, 1941) and, independently,

by Cicala (1944). In von Karman et al. (1940), a rigid-bar model with a non-linear spring was examined and

a simple physical explanation of the strong postbuckling load drop and imperfection sensitivity was pre-

sented.

The asymptotic analysis of Koiter (1945) supplied a sound basis for studying postbuckling behaviour.
Accordingly, it is assumed that, in the initial postbuckling stage, the deformed shape is that of the buckling

mode, and as such the first and second derivatives of the total potential energy with respect to a scalar

variable amplifying the buckling mode allow us to determine the equilibrium paths and their stability

conditions, respectively. When simultaneous or nearly simultaneous buckling modes occur, there is a

�competing� interaction between modes so that severely unstable paths coupling more than one mode

generate (see e.g. Bazant and Cedolin, 1991, Section 7.7; and Gioncu, 1994 for a general account). The

simple Augusti�s model elucidates this phenomenon (Augusti, 1964). An account of the problem of mode

interactions along with its imperfection sensitivity implications in shells structures (specifically axially
compressed cylindrical shells) is given in Hutchinson and Koiter (1970).



Fig. 1. Coordinates and nomenclature of the conical shell.
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Conical shells exhibit a buckling behaviour which is somehow similar to that illustrated before for

cylinders. In particular, there are evidences that also conical shells subject to axial compression are im-

perfection sensitive (Lackman and Penzien, 1960; Spagnoli, 1994; Chryssanthopoulos et al., 1997; Spagnoli,

2001). The classical buckling analysis of axially compressed cones is based on the same hypotheses ex-

ploited for cylindrical shells (membrane prebuckling state and shallow shell theory of Donnell–Mushtari–

Vlasov). Seide (1956) firstly derived the critical buckling load for an axisymmetric mode, solving the

determinant of stability equations for Poisson�s ratio equal to zero. Such a load is given by the following
simple expression
Pcone ¼
2pEt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p cos2 a ¼ Pcyl cos2 a ð2Þ
Seide�s solution considers an axisymmetric mode, where the out-of-plane displacement w (see Fig. 1) is
given as a linear combination of Bessel functions of the first and second kinds. Lackman and Penzien (1960)

demonstrated that Seide�s critical load is also applicable to non-zero values of the Poisson�s ratio.
Singer (1965), using the asymmetric buckling mode shapes introduced by the same author in a preceding

publication (sine functions with an exponential amplitude, see Eq. (17) of Singer (1961)) and the Galerkin

method, obtained the same Seide�s buckling load. In 1970, two independent papers by Baruch et al. and

Tani and Yamaki also calculated buckling loads for asymmetric modes using the Galerkin method. The

adopted buckling mode shapes are described again by sine functions with an exponential amplitude (see Eq.

(3) of Baruch et al., 1970 , and Eq. (9) of Tani and Yamaki, 1970). However, none of the above papers
related to asymmetric buckling of axially compressed cones indicated the existence of simultaneous modes.
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An attempt to explore the presence of simultaneous buckling modes in cones has been presented by Poggi

(1989). More recently, Pariatmono and Chryssanthopoulos (1995) extensively compared the previous so-

lutions of Baruch et al. (1970) and Tani and Yamaki (1970), showing that, in certain cases, different

buckling modes correspond to the same value of critical load.
In the present paper, the problem of simultaneous buckling modes in axially compressed conical shells is

thoroughly analysed via linear eigenvalue analysis. Finite element (FE) models of a conical panel with

symmetry/antisymmetry boundary conditions along the two meridians are employed. By varying the an-

gular width of the panel, the number of circumferential buckling waves is enforced, allowing a mapping of

the simultaneous doubly periodic buckling modes. The locus of numbers of meridional and circumferential

buckling waves for simultaneous modes is described by an ellipse (hereafter termed as the Koiter ellipse) in a

specifically defined dimensionless wavenumber space. The aspect ratio of such an ellipse is a function of the

tapering angle a, and approaches the limit case of the Koiter circle for cylinders as a tends to zero.
2. Classical buckling analysis of cylindrical shells

2.1. Governing equation and axisymmetric buckling mode

The governing stability equation of Donnell for axially compressed cylinders can be written as follows

(see, for instance, Brush and Almroth, 1975 , Section 5.5b):
Dr4ðr4wÞ þ 1� m2

R2
Cw;xxxx þ

P
2pR

r4w;xx ¼ 0 ð3Þ
where w is the incremental out-of-plane displacement with respect to the initial (prebuckling) state, the

comma subscript corresponds to partial differentiation against the variable indicated, and
r4ð Þ ¼ ð Þ;xxxx þ
2

R2
ð Þ;xx## þ

1

R4
ð Þ;#### ð4Þ
The coordinates x and # are reported in Fig. 1 (for a ¼ 0�).
The solution of Eq. (3) is given by the following axisymmetric buckling mode (eigenvalue), (e.g. see

Timoshenko, 1910):
wðxÞ ¼ sin
px
lm

� �
ð5Þ
where lm ¼ L=m is the meridional buckling half wavelength. The corresponding buckling load (eigenvector)
is equal to:
P ¼ 2pEt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p lm
k

� �2
"

þ 1

4

k
lm

� �2
#

ð6Þ
where k is the half wavelength according to the linear bending theory for cylinders, i.e.
k ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ4

p ffiffiffiffiffi
Rt

p
ð7Þ
The length k corresponds to the difference between two successive values of the meridional coordinate at

which the meridional moment is equal to zero.

The critical buckling load for the axisymmetric mode is given by Eq. (1), and is obtained by minimizing
Eq. (6) against the number of meridional buckling half waves. The minimizing meridional half wavelength

is equal to
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l0 ¼
kffiffiffi
2

p ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� m2Þ4

p ffiffiffiffiffi
Rt

p
ð8Þ
2.2. Doubly periodic buckling modes and the Koiter circle

The solution of Eq. (3) for asymmetric buckling modes (eigenvectors) is given by the following doubly

periodic function (Donnell, 1934):
wðx; yÞ ¼ sin
px
lm

� �
sin

py
lc

� �
ð9Þ
where lm and lc are the meridional and circumferential buckling half wavelength, respectively
lm ¼ L
m

ð10aÞ

lc ¼
pR
n

ð10bÞ
By introducing the following dimensionless wavenumbers
bm ¼ k
lm

ð11aÞ

bc ¼
k
lc

ð11bÞ
the buckling load (eigenvalue) corresponding to the solution (9) of Eq. (3) can be written as
P ¼ 2pEt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p A
�

þ 1

4A

�
¼ PcylF ðbm; bcÞ ð12Þ
where
A ¼ b2
m

ðb2
m þ b2

cÞ
2

ð13Þ
As is shown in Fig. 2, the locus of the constant A in the dimensionless wavenumber space bm–bc is described

by the equation of a circle (the Koiter circle):
Dimensionless wavenumber, βm
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Fig. 2. Koiter circles for axially compressed cylindrical shells in the bm–bc dimensionless wavenumber space.



A. Spagnoli / International Journal of Solids and Structures 40 (2003) 6095–6109 6101
ðbm � aÞ2

a2
þ b2

c

a2
¼ 1 ð14Þ
where the radius a of the circle is equal to:
a ¼
ffiffiffi
A

p
ð15Þ
The minimum of Eq. (12) (P ¼ Pcyl) is for F ¼ 1, i.e. for A ¼ 1=2. The corresponding radius of the Koiter

circle becomes
a ¼
ffiffiffi
A

p
¼ 1ffiffiffi

2
p ¼ b0

2
ð16Þ
where
b0 ¼
k
l0

ð17Þ
The above-reported buckling load and modes obtained from the solution of Donnell stability equation refer

to simply supported (SS) boundary conditions along the curved edges of the cylinder (w ¼ 0 and w;xx ¼ 0 at

x ¼ 0; L). Boundary conditions on the displacements u and v are ignored.

2.3. Effect of the shell finite length

Since both m and n are positive integers for cylinders of finite length, only discrete values of bm and bc

should be considered in Eq. (14). The spacing of the discrete values of bm and bc can be obtained from Eqs.

(7), (10) and (11), i.e.
Dbm ¼ k
L
¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� m2Þ4
p ffiffiffiffiffi

Rt
p

L
ð18aÞ

Dbc ¼
k
pR

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ4

p
ffiffiffi
t
R

r
ð18bÞ
Note that the discrete values of bm and bc lie at the nodal points of a rectangular grid (see Fig. 4), and that

the aspect ratio of the unit cell of the grid is equal to L=pR (see Fig. 14.8 of Calladine, 1983). Thus, the pairs

of meridional and circumferential buckling wavenumbers do not exactly fall on the Koiter circle. However,
given the small values of Dbm and Dbc for typical dimensions of cylindrical shell structures in comparison to

the radius a of the Koiter circle, P is nearly equal to Pcyl for many pairs of m and n values (see Fig. 14.9 of

Calladine, 1983).

The minimization of Eq. (12) leading to the critical load Pcyl is performed considering m as a continu-

ously variable. As is mentioned above, for shells of finite length, m is an integer, and as such P calculated

from Eq. (12) might result to be higher than Pcyl. The minimum value of L (being m ¼ 1) for which P ¼ Pcyl
defines the lower limit of the range of applicability of Eq. (12) (called range of moderately long cylinders),

that is:
LP 1:69

ffiffiffiffiffi
Rt

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� m2Þ4

p ð19Þ
The above inequality corresponds to a value of the Batdorf parameter Z higher that 2.85 (Batdorf, 1947).
Obviously, the upper limit of applicability of the Donnell formulation is given by the buckling of the

cylinder as a column with undeformed cross-sections (m ¼ n ¼ 1), (called range of very long cylinders).
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3. Buckling analysis of conical shells

3.1. Classical theory and governing equations

The governing stability equations of Donnell for axially compressed cones can be written in the fol-

lowing u� w coupled form, where u is a stress function and w is the incremental out-of-plane displacement

with respect to the initial (prebuckling) state (see, for instance, Pariatmono and Chryssanthopoulos, 1995):
r2ðr2
u0Þ ¼ � 1

s0
w0

;s0s0

r2ðr2
w0Þ þ P 0 1

s0
w0

;s0s0 � 12c2
1

s0
u0

;s0s0 ¼ 0

ð20Þ
where the following dimensionless quantities are used:
u0 ¼ u
Et2s2 cot a

P 0 ¼ 4
P

Pcone

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p s2
t
cot a

c ¼ s22
R2t

cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
ð21Þ
along with the second-order partial differential operator:
r2ð Þ ¼ ð Þ;s0s0 þ
1

s0
ð Þ;s0 þ

1

s02
ð Þ;#0#0 ð22Þ
As is presented in Section 1, no closed-form solutions of Eq. (20) for asymmetric buckling modes of axially

compressed conical shells are available in the literature, being the existing solutions (Singer, 1965; Baruch

et al., 1970; Tani and Yamaki, 1970) based on the Galerkin method.

It is worth recalling that in the buckling analysis of conical shells, conversely to cylindrical shells, the

application of translational constraints along the curved edges is twofold. Simple supports can be defined in

fact by either the condition of u sin a� w cos a ¼ 0 and v ¼ 0 (hereafter called �ring� boundary conditions)

representing the actual constraint imposed by bulkheads that are rigid in a plane perpendicular to the cone

axis, or the condition of w ¼ 0 and v ¼ 0 (hereafter called �cylinder� boundary conditions) representing zero
out-of-plane displacements along the curved edges. Note that Seide (1956) along with Lackman and

Penzien (1960) considered SS �ring� boundary conditions, while the other authors cited in Section 1 analysed

different �cylinder� boundary conditions (Table 1). In particular, Baruch et al. (1970) studied SS boundary

conditions, while Tani and Yamaki (1970) and Pariatmono and Chryssanthopoulos (1995) considered both

SS and clamped (CC) boundary conditions.

3.2. Linear-eigenvalue analysis and finite element modelling

A linear eigenvalue FE analysis using the general-purpose computer program ABAQUS (Hibbit et al.,

2002) is carried out to determine the elastic critical buckling load and the corresponding modes of axially

compressed conical shells with different values of the tapering angle. The use of the FE method for solving

such a linear stability problem is supported by the fact that general buckling mode shapes can be described.

FE models of a portion of the conical shell limited by two meridians (panel model) are built up along with

axisymmetric models. For the panel model, nine-node Lagrange shell elements (ABAQUS element type
S9R5), based on the degenerated shell theory and Mindlin kinematic assumptions, are employed. The

above FE uses a reduced 2· 2 Gauss integration and has five degrees of freedom per node. The element



Table 1

Translational out-of-plane end-constraints in previous theoretical studies, and applied boundary conditions along the curved and

meridional edges in the present FE panel model, during prebuckling stage and at buckling

Theory Present FE model

�Ring� b.c.a �Cylinder� b.c.b Curved edgesc Meridional edges

Prebuckling – – v ¼ 0 Symd+Symd

u sin a� w cos a ¼ 0

Buckling u sin a� w cos a ¼ 0 w ¼ 0 v ¼ 0 Symd+Asyme

a See Lackman and Penzien (1960) and Seide (1956).
b See Baruch et al. (1970), Tani and Yamaki (1970) and Pariatmono and Chryssanthopoulos (1995).
c u ¼ constant along the small-radius end and u ¼ 0 along the large-radius end.
d Symmetry boundary conditions: v ¼ uu ¼ uw ¼ 0 (uu ¼ rotation about u––direction, uw ¼ rotation about w––direction).
eAntisymmetry boundary conditions: u ¼ w ¼ uv ¼ 0 (uv ¼ rotation about v––direction).
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formulation is based on a large displacement and small strain analysis. For axisymmetric models, a 3-node

axisymmetric element (ABAQUS element type SAX2) is adopted. The value of the Poisson�s ratio m is kept
equal to 0.3.

Radially fixed rotationally free SS �ring� boundary conditions (u sin a� w cos a ¼ 0 and v ¼ 0) are ap-

plied along the curved edges (ends) of the panel model (axisymmetric model). The models are loaded by

imposing uniform meridional displacements along the small radius end (u ¼ constant), and by constraining

the corresponding displacements along the large radius end (u ¼ 0). Symmetry and antisymmetry boundary

conditions along the two meridians, respectively, of the panel model are adopted, which allows us to model

a quarter of circumferential buckling wave. In the formation of the conventional stiffness matrix (pre-

buckling stage) membrane boundary conditions (u ¼ 0 and v ¼ 0) and symmetry boundary conditions are

applied along the curved edges and the two meridians, respectively. The adopted boundary conditions in
the panel model are summarised in Table 1.

By varying the panel width of the FE model, the number of circumferential buckling waves can be

enforced (Fig. 3). Being #0 the panel angular width, the following number of circumferential buckling waves

is imposed (provided that a quarter of circumferential wave develops within the panel):
Fig. 3.
n ¼ p
2#0

ð23Þ
For axisymmetric FE models, axisymmetric buckling modes (n ¼ 0) are picked up.

Convergence studies have been undertaken to ensure that the adopted meshes produce accurate results

for buckling load and mode predictions. For panel models, the adopted mesh presents a maximum angular
0

Angular width of the FE panel model (e.g. #0 ¼ 22:5�) and circumferential profile of the related buckling mode (e.g. n ¼ 4).
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width for each element equal to 1.5�. The meridional number of elements is determined so that each element

has an aspect ratio approximately equal to unity near the small-radius end (near the large-radius end the

aspect ratio attains the maximum value of 3.7 for a ¼ 60�). The following values of the geometric pa-

rameters are kept constant while varying the tapering angle a (a ¼ 0�, 15�, 30�, 45� and 60�): t ¼ 1 mm,
R1=t ¼ 1000, L=R1 ¼ 3. The value of the ratio L=R1 has been chosen in order to obtain an approximately

square grid of discrete values in the bm–bc space (L=pR1 � 1, see Section 2.3). The maximum value of ta-

pering angle considered is linked to the limit value commonly adopted in the buckling analysis and design

of conical shells (e.g. see ECCS, 1988). Beyond such a value, aspects related to snap-through instability

might be more relevant than those, here investigated, related to bifurcation instability. For panel models,

the analyses are performed with an angular width #0 varying from 2.8� to 45� (according to Eq. (23), n
ranges from 32 to 2). A total number of 155 analyses are performed, and 20 eigenvalues/eigenvectors are

extracted for each analysis.
Doubly periodic buckling modes (see Eq. (9)) are obtained from FE analyses of panel models. The

number of circumferential buckling waves n is determined from Eq. (23) when a quarter of circumferential

wave develops within the panel. Wide panels (having #0 higher than 11.25�) exhibit occasionally a 3/4-

circumferential wave, and the number n is calculated accordingly. A few modes (less than 5% of the total

eigenmodes extracted), given by the superposition of a certain asymmetric mode with an axisymmetric

barrel model (having a single half-wave in the meridional direction), are detected. Also, a number of modes

(about 11% of the total eigenmodes extracted), given by the superposition of two asymmetric modes with

the same number n of circumferential waves, are observed. In the former cases, the pair of meridional and
circumferential waves of the mode superimposing the barrel one is counted (and reported in the wave-

number spaces of Figs. 4 and 5, see Section 3.3), while in the latter cases, the two pairs of meridional and

circumferential waves of the combined modes are considered (n is the same for both the modes). In a few

cases (for a 6¼ 0�), a small decay in the amplitude of the buckling mode in the meridional direction, from the

small- to the large-radius end, is experienced. However, since in the present study simultaneous buckling

modes are analysed only in terms of wavenumbers, decaying modes are also reported in the wavenumber

spaces of Figs. 4 and 5 (see Section 3.3) by neglecting their varying amplitude. Some spurious modes,

representing less than 2% of the total eigenmodes extracted, are detected. Such modes are not considered in
the discussion of Section 3.3 since they are connected to numerical instabilities and, hence, they are not

realistic. It is seen that the frequency of occurrence of either spurious or non-constant amplitude modes

(barrel modes, superimposed modes and decaying modes) does not increase with increasing tapering angle.

Moreover, no clear tendency in the distribution of the corresponding buckling loads is observed.
3.3. Locus of simultaneous buckling modes

Now let us consider, for each value of the tapering angle a, the simultaneous buckling modes obtained

from FE analyses. By taking the buckling modes related to P 6 1:02Pcone (including also axisymmetric

modes, n ¼ 0) and plotting the pairs of meridional and circumferential wavenumbers in the bm–bc space, a
comparison with the Koiter circle for cylinders (see Eq. (14)) is made (Fig. 4). For the sake of completeness,

the grid in the bm–bc space with spacing defined by Eq. (18) is also plotted in Fig. 4. It can be observed that

there is a deviation of the locus of simultaneous buckling modes for cones from that described by the Koiter

circle. In particular, the number of meridional buckling half waves for cones is smaller than that of a

cylinder having height and radius equal to the slant length and minimum radius of the examined cone,

respectively (in the present study, the ratios L=R1 and R1=t are kept constant while a varies).

Since the radius of curvature q of cones is a function of the meridional coordinate x (Fig. 1), it is here

proposed to use a new normalisation for the buckling wavenumber space, which is based on the average
values of the geometric parameters of the cone, i.e.



Fig. 4. Koiter circle (F ¼ 1) for cylinders and FE buckling modes with P 6 1:02Pcone for cones in the bm–bc dimensionless wavenumber

space: (a) cylinder (a ¼ 0�), (b) a ¼ 15�, (c) a ¼ 30�, (d) a ¼ 45� and (e) a ¼ 60�.
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�bbm ¼
�kk
�llm

ð24aÞ

�bbc ¼
�kk
�llc

ð24bÞ
where
�llm ¼ lm ¼ L
m

ð25aÞ

�llc ¼
p�qq
n

ð25bÞ



Fig. 5. Locus of simultaneous buckling modes (Koiter ellipses for P ¼ Pcone and P ¼ 1:02Pcone) and FE buckling modes with

P 6 1:02Pcone for cones in the �bbm–
�bbc dimensionless wavenumber space: (a) cylinder (a ¼ 0�), (b) a ¼ 15�, (c) a ¼ 30�, (d) a ¼ 45� and

(e) a ¼ 60�.
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and
�kk ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ4

p ffiffiffiffiffi
�qqt

p
ð26Þ
The value �kk of Eq. (26), based on the average radius of curvature �qq, corresponds to the average half

wavelength according to the linear bending theory for cones. In fact, it has been verified through linear

elastic analysis of an axisymmetric FE model that, at the two ends of the cone, the wavelength k is de-

pendent on the local radius of curvature (k is proportional to
ffiffiffiffiffi
q1

p
and

ffiffiffiffiffi
q2

p
, at the small- and large-radius

end, respectively).
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The same FE modes reported in Fig. 4 (related to P 6 1:02Pcone) are presented in Fig. 5 according to the

proposed normalisation of the wavenumber space (�bbm–
�bbc space). It can be seen that the locus of simul-

taneous buckling modes can now be described by an ellipse (called the Koiter ellipse), namely
Fig. 6.

values
ð�bbm � �aaÞ2

�aa2
þ

�bb2
c

�bb2
¼ 1 ð27Þ
where
�aa ¼ 1ffiffiffi
2

p ð28aÞ

�bb ¼ cos affiffiffi
2

p ð28bÞ
This is supported by the fact that many FE buckling wavenumbers fall in the region enclosed by the Koiter

ellipses for P ¼ 1:02Pcone. In line with Eqs (12) and (15) for cylinders, such ellipses are assumed to have

semiaxes equal to 1.1 and 0.9 times the values of �aa and �bb of Eq. (28) (according to Eq. (12), for F ¼ 1:02 A is

equal to 0.610 and 0.410, and from Eq. (15) a ¼ 0:781 and 0.640, respectively, that is, 0:781 � 1:1=
ffiffiffi
2

p
and

0:640 � 0:9=
ffiffiffi
2

p
).

Note that the value of P ¼ 1:02Pcone has arbitrarily been chosen in order to have a relatively large number

of discerete values in the bm–bc space (see nodal-points of the grid reported in Fig. 4) falling in the half
crescent-like region enclosed by the Koiter ellipses for P ¼ 1:02Pcone. In fact, owing to the finite length of the

conical shell analysed (t ¼ 1 mm, R1=t ¼ 1000, L=R1 ¼ 3), the values of bm and bc (as well as those of
�bbm and

�bbc) for the extracted FE buckling modes (with P 6 1:02Pcone) lay on the nodal-points mentioned above.

In Fig. 6, the variation of the locus of simultaneous buckling modes in the �bbm–
�bbc space is presented as a

function of the tapering angle a. It can be noted that, while the shape of such a locus changes from a circle

for cylinders (a ¼ 0�) to ellipses for cones (with �bb ¼ �aa cos a), the dimensionless meridional wavenumber �bb0

for axisymmetric buckling remains constant (�bb0 ¼
ffiffiffi
2

p
). This implies that the corresponding meridional

buckling half wavelength l0 is equal to �kk=
ffiffiffi
2

p
(see Eq. (17) for k ¼ �kk) for any value of the tapering angle a,

being the effect of a incorporated in the new definition of the wavelength �kk (Eq. (26)). Moreover, it is worth

recalling that, following the proposed normalisation of the buckling wavenumber space, the distribution of

simultaneous buckling modes for cones can be seen as that of an equivalent cylinder of equal thickness with
Locus of simultaneous buckling modes (Koiter ellipses for P ¼ Pcone) in the �bbm–
�bbc dimensionless wavenumber space for different

of the tapering angle a.
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radius �qq and height L. As is stated above, the tapering angle a plays a role only in affecting the ratio �bb=�aa
between semiaxes (Eqs. 28a,28b) of the Koiter ellipses (�bb=�aa ¼ 1 for cylinders, that is, the Koiter circle).

Finally, it should be mentioned that, if �llc is assumed to be equal to pR=n (this might be more appropriate

from a geometrical point of view, since the average length of the parallels of the cone along which cir-
cumferential buckling waves develop is equal to 2pR) instead of using the definition (25b), the locus of

dimensionless wavenumbers for simultaneous buckling modes can be described by the Koiter circle for any

value of a. However, the definition (25b) is deemed to be preferable since it relates the buckling behaviour

of conical shells to that of their cylindrical counterparts, and as such the present study can be placed in the

main stream of equivalent cylinder approaches commonly used in the approximate methods of buckling

analysis and design of cones (e.g. see Finzi and Poggi, 1987 and ECCS, 1988).
4. Conclusions

The salient points of the present study include:

ii(i) Linear eigenvalue analysis of FE models (panel model and axisymmetric model) provides evidence of

the existence of simultaneous buckling modes for conical shells under axial compression;

i(ii) The number of meridional buckling half waves for cones is smaller than that of a cylinder of equal

thickness having height and radius equal to the slant length and minimum radius of cone, respectively;
(iii) The pairs of circumferential and meridional buckling waves for a conical shell corresponding to the

same critical load tend to describe, in a specifically defined dimensionless wavenumber space, an ellipse

(here termed as the Koiter ellipse) whose aspect ratio is equal to cos a, where a is the tapering angle of

cone;

(iv) The distribution of simultaneous buckling modes for cones can be seen as that of an equivalent cylin-

der of equal thickness with radius �qq and height L. The tapering angle a plays a role only in affecting the

ratio �bb=�aa between the semiaxes of the Koiter ellipses (�bb=�aa ¼ 1 for cylinders, that is, the Koiter circle).

In conclusion, the present paper, by providing evidence of the existence of simultaneous buckling modes,

might offer a starting point from which the imperfection sensitivity of cones, particularly in terms of

juxtaposing cones to cylinders, can then be investigated (e.g. through non-linear analysis of FE models with

eigenmode-affine imperfections).
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